
REVERSIBILITY OF RELATIONAL STRUCTURES
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Preliminaries

• L = 〈Ri : i ∈ I〉, ar(Ri) = ni ∈ N, i ∈ I - a relational language
• IntL(X) :=

∏
i∈I P(Xni) is the complete atomic Boolean lattice of all

interpretations of the language L over the domain X, where for
ρ = 〈ρi : i ∈ I〉 and σ = 〈σi : i ∈ I〉 we let (slightly abusing notation)

ρ ⊆ σ def⇐⇒ ∀i ∈ I ρi ⊆ σi.

• For f : X → Y , the mapping f n : Xn → Yn is defined by

f n(〈x1, . . . , xn〉) := 〈f (x1), . . . , f (xn)〉, for 〈x1, . . . , xn〉 ∈ Xn,

and let (again slightly abusing notation)

f [ρ] := 〈f ni [ρi] : i ∈ I〉, f−1[σ] := 〈(f ni)−1[σi] : i ∈ I〉.
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Morphisms

Hom(ρ, σ), Mono(ρ, σ), Cond(ρ, σ), SHom(ρ, σ), Emb(ρ, σ) and Iso(ρ, σ)
will denote the sets of all homomorphisms, monomorphisms, condensations
(bijective homomorphisms), strong homomorphisms, embeddings and
isomorphisms f : 〈X, ρ〉 → 〈X, σ〉, respectively.

We have:
• Hom(ρ, σ) = {f ∈ XX : f [ρ] ⊆ σ} = {f ∈ XX : ρ ⊆ f−1[σ]}.
• Cond(ρ, σ) = {f ∈ Sym(X) : f [ρ] ⊆ σ} =

= {f ∈ Sym(X) : ρ ⊆ f−1[σ]} = {f : f−1 ∈ Cond(σc, ρc)}.
• SHom(ρ, σ) = {f ∈ XX : ρ = f−1[σ]}.
• Iso(ρ, σ) = {f ∈ Sym(X) : f [ρ] = σ} =

= {f ∈ Sym(X) : ρ = f−1[σ]} = {f : f−1 ∈ Iso(σ, ρ)}.
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Variations of reversibility

For ρ, σ ∈ IntL(X) we shall shortly write

ρ ∼= σ iff 〈X, ρ〉 ∼= 〈X, σ〉.

Then we have

[ρ]∼= := {σ ∈ IntL(X) : ρ ∼= σ} = {f [ρ] : f ∈ Sym(X)}.

For ρ ∈ IntL(X) we shall say that ρ is
• strongly reversible iff [ρ]∼= is the singleton.
• reversible iff [ρ]∼= is an antichain in the Boolean lattice 〈IntL(X),⊆〉.
• weakly reversible iff [ρ]∼= is a convex set in the Boolean lattice
〈IntL(X),⊆〉.

Clearly, we have

sRevL(X) ⊆ RevL(X) ⊆ wRevL(X).
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Strong reversibility

Proposition

For each interpretation ρ = 〈ρi : i ∈ I〉 ∈ IntL(X) the following is equivalent:
(a) ρ is strongly reversible.
(b) Sym(X) = Aut(ρ).
(c) For each f ∈ Sym(X) we have f [ρ] = ρ.
(c) For each i ∈ I, the relation ρi is strongly reversible.
(d) For each i ∈ I, the relation ρi is a subset of Xni definable by a formula of
the empty language L∅.

If Lb = 〈R〉 is the binary language, then the only strongly reversible elements
of IntLb(X) are:
• ∅ (the empty relation)
• ∆X (the diagonal)
• X2 \∆X (the complete graph)
• X2 (the full relation)
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the empty language L∅.

If Lb = 〈R〉 is the binary language, then the only strongly reversible elements
of IntLb(X) are:
• ∅ (the empty relation)
• ∆X (the diagonal)
• X2 \∆X (the complete graph)
• X2 (the full relation)
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Reversibility

Proposition

For each interpretation ρ = 〈ρi : i ∈ I〉 ∈ IntL(X) the following is equivalent:
(a) ρ is reversible.
(b) Cond(ρ) = Aut(ρ).
(c) For each f ∈ Sym(X) we have f [ρ] ⊆ ρ⇒ f [ρ] = ρ.
(d) ρ is an extreme element of [ρ]∼=.

FcfL(X) := {ρ ∈ IntL(X) : ∀i ∈ I (|ρi| < ω ∨ |ρc
i | < ω)}.

Proposition

Let ρ = 〈ρi : i ∈ I〉 ∈ IntL(X). Then
(a) FcfL(X) ⊆ RevL(X), so if |X| < ω then RevL(X) = IntL(X).
(b) If all ρi, i ∈ I are reversible, then ρ is reversible.
(c) For each ρ1 ⊆ Xn we have that ρ := 〈ρ1, ρ

c
1〉 is reversible.
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Reversibility of extreme structures

If C ⊆ IntL(X) is an ∼=-invariant set, then the maximal and minimal elements
of the poset 〈C,⊆〉 are reversible interpretations. We shall investigate this
when C is of the form

IntTL (X) := {ρ ∈ IntL(X) : 〈X, ρ〉 |= T },

for some set T of sentences of the infinitary language L∞ω. Of course, there
are sets of the form IntTL (X) having neither maximal nor minimal elements,
and hence, in the sequel we isolate classes of formulas Φ and Ψ such that
IntTL (X) has maximal (minimal) elements whenever T ⊆ Φ (T ⊆ Ψ).
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Two classes of formulas

Let Φ be the smallest set of L∞ω-formulas such that: each positive formula
belongs to Φ, negation of each atomic formula belongs to Φ, Φ is closed
under finite

∨
, and under arbitrary

∧
, and under ∀.

Proposition

Let T ⊆ Φ ∩ SentL be an L-theory having models of size |X|. Then each
interpretation ρ ∈ IntTL (X) is contained in some maximal element τ of the
poset 〈IntTL (X),⊆〉, and τ is a reversible interpretation.

Let Ψ be the smallest set of L∞ω-formulas such that: each atomic formula
belongs to Ψ, negation of each positive formula belongs to Ψ, Ψ is closed
under finite

∨
, and under arbitrary

∧
, and under ∀.

Proposition

Let T ⊆ Ψ ∩ SentL be an L-theory having models of size |X|. Then each
interpretation ρ ∈ IntTL (X) contains some minimal element τ of the poset
〈IntTL (X),⊆〉, and τ is a reversible interpretation.
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Forbidding any number of finite substructures

Proposition

For each relational language L = 〈Ri : i ∈ I〉 and each finite L-structure F
there is an L∞ω-sentence ψF↪→ such that
(a) For each Y ∈ ModL we have F ↪→ Y ⇔ Y |= ψF↪→.
(b) If the language L is finite, then ¬ψF↪→ ∈ Φ∩Ψ and for each set X we have

Int{¬ψF↪→}
L (X) = {ρ ∈ IntL(X) : F 6↪→ 〈X, ρ〉}.

If F is a finite structure of a finite language L and X a set, then the set of
interpretations ρ ∈ IntTL (X) satisfying F 6↪→ 〈X, ρ〉 has maximal and minimal
elements, which are reversible interpretations. In addition, since the classes Φ
and Ψ are closed under arbitrary conjuctions, for a set of finite L-structures
{Fα : α < κ} such that the theory T ′ := T ∪ {

∧
α<κ ¬ψFα↪→} has models of

size |X|, we obtain maximal and minimal elements of IntT
′

L (X).
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Examples of reversible extreme structures

One thing is to prove that extreme interpretations exist, and the other is to find
(characterize) those of them that are nontrivial. We shall now see some
examples. The work on this problem is still in progress.

Example

If F1 := 〈{0}, {〈0, 0〉}〉, then Int
{¬ψF1↪→}
L (X) is the set of all irreflexive binary

relations ρ ⊆ X2 and its maximum is the complete graph X2 \∆X , which is
reversible (and moreover strongly reversible).

Lemma

If F2 := 〈{0, 1}, {0, 1}2〉 then ρ is a maximal element of the poset

〈Int
{¬ψF2↪→}
L (X),⊆〉 iff ρ = X2 \ (σR ∪∆X\R), where R is a nonempty subset

of X and σR ⊆ R2 is a tournament on R.
All such interpretations are reversible.
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Examples of reversible extreme structures

Example
For R = X, we obtain all reflexivized tournaments on X. By taking
complements, we obtain all tournaments on X, and in particular, since linear
orders are reflexive tournaments, we obtain all (reflexive) linear orders.

Example (Reversible Kn-free graphs)

The class IntTgraph∪{¬ψKn↪→}
Lb

has maximal elements, they are reversible and
different from X2 \∆X . For n = 3 and X = ω, here are some of the maximal
K3-free (i.e. triangle-free) graphs:
• The star graph,
• 〈ω, ρs〉 where ρ := {〈n, n + 2k + 1〉 : n, k ∈ ω},
• the Henson graph H3, the unique countable ultrahomogeneous universal
K3-free graph.
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Connectedness

• From now on, we work with the binary language Lb = 〈R〉, ar(R) = 2.
A binary structure 〈X, ρ〉 is connected iff |X/ρrst| = 1, where ρrst is the
smallest equivalence relation containing ρ.

• If Xi = 〈Xi, ρi〉, i ∈ I, are nonempty connected Lb-structures and
Xi ∩ Xj = ∅, for different i, j ∈ I, then the structure

⋃
i∈I Xi =

= 〈
⋃

i∈I Xi,
⋃

i∈I ρi〉 is the disjoint union of the structures Xi, i ∈ I, and
the structures Xi, i ∈ I, are its components.

• We can identify a binary structure 〈X, ρ〉 with the directed graph whose
set of vertices is X. Vertices x and y are connected with an edge going
from x to y iff 〈x, y〉 ∈ ρ. For x = y we have loops. A binary structure is
connected iff its corresponding digraph is weakly connected.
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Reversible equivalence relations

The disjoint union of connected Lb-structures
⋃

i∈I Xi will be called
monomorphic with respect to the components iff

∀i, j ∈ I ∀A ∈ [Xj]
|Xi| ∃g ∈ Mono(Xi,Xj) g[Xi] = A.

An I-sequence of nonzero cardinals 〈κi : i ∈ I〉 will be called reversible iff
each surjection f : I → I such that κj =

∑
i∈f−1[{j}] κi, for all j ∈ I, must be

one-to-one. Also, let I#
κ := {i ∈ I : |Xi| = κ}.

Proposition

A disjoint union
⋃

i∈I Xi of connected reversible Lb-structures, which is
monomorphic with respect to the components, is reversible iff |I#

κ | < ω, for
each cardinal κ, or 〈|Xi| : i ∈ I〉 ∈ IN and this sequence is reversible.

Therefore, an equivalence relation is reversible iff the number of classes of the
same size is finite, or all the classes are finite and their sizes form a reversible
sequence.
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Reversible disconnected binary structures

Proposition
Let Xi, i ∈ I, be pairwise disjoint and connected Lb-structures. If the union⋃

i∈I Xi is reversible, then Xi is reversible for each i ∈ I.

The above necessary condition is not sufficient.

Proposition
Let Xi, i ∈ I, be disjoint, connected and reversible Lb-structures. Then the
union

⋃
i∈I Xi is reversible iff the following conditions are satisfied:

1. For each noninjective surjection f : I → I there is j ∈ I such that

Cond
(⋃

i∈f−1[{j}] Xi,Xj

)
= ∅.

2. There is no infinite sequence 〈ik : k ∈ Z〉 of different elements from I such
that Cond(Xik+1 ,Xik) 6= ∅ for each k ∈ Z, and Iso(Xi1 ,Xi0) = ∅.
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Sufficient conditions for reversibility

The necessary and sufficient condition from the previous theorem is not very
operative. In the sequel, we give some sufficient conditions for reversibility of
disconected binary structures that are more operative.

List the following conditions:

(a1) For each non-injective surjection f : I → I there is j ∈ I such that

Cond
( ⋃

i∈f−1[{j}]

Xi,Xj

)
= ∅.

(a2) For all j ∈ I and K ⊂ I, |K| > 1, we have Cond(
⋃

i∈K Xi,Xj) = ∅.
(a3) Mono(Xi,Xj) = Cond(Xi,Xj) for each i, j ∈ I, such that i 6= j.
(a4) The I-sequence of cardinals 〈|Xi| : i ∈ I〉 is reversible.
(a5) For all j ∈ I and K ⊂ I, the equality |Xj| =

∑
i∈K |Xi| implies |K| = 1.
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Sufficient conditions for reversibility

And also list the following conditions:
(b1) There is no infinite sequence 〈ik : k ∈ Z〉 of different elements from I
such that Cond(Xik+1 ,Xik) 6= ∅ for each k ∈ Z, and Iso(Xi1 ,Xi0) = ∅.
(b2) There is no infinite sequence 〈ik : k ∈ ω〉 of different elements from I
such that Cond(Xik+1 ,Xik) 6= ∅ for each k ∈ ω, and Iso(Xi1 ,Xi0) = ∅.
(b3) Nonisomorphic components are condensation incomparable.
(b4) Components of the same size are isomorphic.

Proposition
Let Xi, i ∈ I, be disjoint, connected and reversible Lb-structures. Then any of
the conditions (a1)-(a5), together with any of the conditions (b1)-(b4), implies
that the union

⋃
i∈I Xi is reversible.

Proof.
(a3) ⇒ (a2) ⇒ (a1)

⇑ ⇑
(a5) ⇒ (a4)

(b4)⇒ (b3)⇒ (b2)⇒ (b1) 2
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Examples of reversible disconnected binary structures

In the direct product of the above diagrams all the implications are proper, and
there are no new implications (except the ones following from transitivity).

Table 1: Various reversible and nonreversible (gray) disconnected binary
structures
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Additional sufficient conditions for reversibility

Proposition

Let Xi = 〈Xi, ρi〉, i ∈ I, be disjoint, connected and reversible Lb-structures.
Then the union

⋃
i∈I Xi is reversible if there is no infinite sequence 〈ik : i ∈ ω〉

of different elements from I such that Mono(Xik+1 ,Xik) 6= ∅ for each k ∈ ω,
and Mono(Xi1 ,Xi0) 6= Iso(Xi1 ,Xi0).

Corollary
Let Xi, i ∈ I, be disjoint, connected and reversible Lb-structures, and let θ be
a cardinal function satisfying the following monotonicity property:

Mono(X,Y) 6= ∅ ⇒ θ(X) ≤ θ(Y).

Then the union
⋃

i∈I Xi is reversible if Mono(Xi,Xj) = Iso(Xi,Xj) for each
i, j ∈ Iθκ∗ , i 6= j, where κ∗ := supi∈I θ(Xi), and for each cardinal κ < κ∗ there
is no infinite sequence 〈ik : k ∈ ω〉 of different elements from Iθκ such that
Mono(Xik+1 ,Xik) 6= ∅ for each k ∈ ω.
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An example of reversible disconnected binary structures

Vopěnka, Pultr and Hedrlı́n showed in [12] that on any set X there is an endo-
rigid irreflexive binary relation ρ. One can easily construct nonirreflexive
relations on any X such that idX is the only endomorphism of the structure X.
For example, if X = ω, let ρ = {〈0, 0〉} ∪

⋃
n∈ω{〈n, n + 1〉}. Since

{idX} ⊂ Aut(X) ⊂ Cond(X) ⊂ Mono(X) ⊂ Hom(X) = {idX},
we conclude that any such X is reversible, and that Mono(X) = Aut(X).
However, it is not enough to require X to be rigid (i.e. Aut(X) = {idX}) and
reversible, in order to have Mono(X) = Aut(X). For example, X = 〈ω,<〉 is
rigid and reversible, but Mono(X) \ Aut(X) 6= ∅. Also, there are nonrigid
structures X such that Mono(X) = Aut(X), for example X = 〈ω, ρ〉 where
ρ = {〈0, 2〉} ∪

⋃
n∈N{〈n, n + 1〉}.

If Aκ∗ is an infinite family of disjoint, connected, reversible and isomorphic
binary structures of size κ∗, such that Mono(X) = Aut(X) for each X ∈ Aκ∗ ,
then Mono(X,Y) = Iso(X,Y) for each X,Y ∈ Aκ∗ , X 6= Y. If for each
cardinal κ < κ∗ = supi∈I |Xi| the set I#

κ is finite, and if {Xi : i ∈ I#
κ∗} = Aκ∗ ,

the union
⋃

i∈I Xi is reversible by the last corollary.
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Further examples of reversible disconnected structures

∗ # ′ ± = � ∆, ◦
θ∗(X) |X| |ρ| Deg±(X) |ρ ∩∆X| 1

2 ·|(ρ\∆X) ∩ (ρ\∆X)−1| · · ·

For k ∈ ω and ∗ ∈ {′,#,±,=,�,∆}, let Yθ∗=k
i , i ∈ M∗k , be all finite and

finitely many infinite (if there are any) nonisomorphic connected reversible
structures for which θ∗ = k, and let Zθ∗=k

i , i ∈ N∗k , be all nonisomorphic...
• ∗ ∈ {′} ... connected structures for which θ′ = k.
• ∗ ∈ {#} ... digraph trees for which θ# = k.
• ∗ ∈ {±} ... connected (deg±-)regular digraphs for which θ± = k.
• ∗ ∈ {=} ... reflexive digraph trees for which θ= = k.
• ∗ ∈ {�} ... connected graphs for which θ� = k.
• ∗ ∈ {∆} ... poset trees with no leaves on first level, for which θ∆ = k.

Then all the components Zθ∗=k
i are connected, finite and reversible, except the

components Zθ±=k
i which are at most countable and reversible.
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Further examples of reversible disconnected structures

∗ k |Yθ∗=k
i | |M∗k | |Zθ∗=k

i | |N∗k |
′ k ∈ ω < ω < ω < ω < ω

# k ∈ N < ω < ω < ω < ω

k ≤ 1 ≤ 2 ≤ 2 ≤ 2 ≤ 2±
k ≥ 2 ≤ ω ω ≤ ω c

= k ∈ ω <∞ ω < ω < ω

� k ∈ ω <∞ ω < ω < ω

∆ k ∈ ω <∞ ω < ω < ω

Table 2: The size of the sets Yθ
∗=k

i , M∗k , Zθ
∗=k

i and N∗k
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Further examples of reversible disconnected structures

For n ≥ 2, and ∗ ∈ {′,#,±,=,�,∆}, let us define the following structure:

X∗n :=
n−1⋃
k=0

( ⋃
i∈M∗k

Yθ
∗=k

i

)
∪
⋃

i∈N∗n

(⋃
ω

Zθ
∗=n

i

)
.

All the structures X∗n are reversible by the last corollary.

X′n X#
n X±n X=

n X�
n X∆

n

n = 2 (a4)
(b2)

(a4)
(b2)

(a1)
(b2)

(a1)
(b2)

(a1)
(b2)

(a1)
(b2)

n ≥ 3 (a1)
(b2)

(a4)
(b2)

(a1)
(b2)

(a1)
(b2)

(a1)
(b2)

(a1)
(b2)

Table 3: The place of the structures X∗n in Table 1

Most of the structures X∗n are placed in (a1) row of Table 1. The condition
(a1) is not operative, therefore the presented sufficient conditions do not
substitute each other.
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